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EXECUTIVE SUMMARY 

Comparison of Alternative Methods of Measuring AS VAB Test Composite Fairness 

Requirement 

At an individual or group level, the difference between predicted performance and actual 

performance can be defined as prediction error in a model of performance. Fairness is 

traditionally defined as the absence of underpredictions for the minority groups that are 

considered potentially susceptible to discrimination. A major objective of the present research is 

to provide evidence that the Prediction Error (PE) model, in which current Army aptitude area 

(AA) composites are used to predict performance, measures fairness as well as the traditional 

Cleary measure of fairness. The specific goal is to compare the results of measuring fairness in 

each of these two models using an Army job performance database covering a wide variety of 

MOS. The research employs a common metric across both models, focusing on MOS for which 

PE differences were previously found to be statistically significant. 

Procedures 

The PE method uses the MOS total group regression parameters to estimate predicted 

scores, and applies these total group parameters in calculating predicted versus actual differences 

for minority subgroups. The Cleary fairness measure depends on differences between regression 

lines using parameters computed in the total sample and in the minority group samples. 

In previous research, ARI's AS VAB and Skill Qualifications Test (SQT) database for FY 

1983-1989 was used to obtain a sample of about 83,000 Soldiers in 66 MOS. Twenty-six of 

these MOS - comprising 36,000 Soldiers, of which about 12,000 were females or blacks - were 

subsequently selected for a more intensive study of fairness in the present research. These 26 



MOS showed statistically significant performance underpredictions for female and/or 

black subgroups. 

Findings 

There were a large number of individuals underpredicted by both models using the 

common metric. Using the Cleary measure, 50 percent or more of females were underpredicted 

in 19 of 25 MOS, and 50 percent of more of blacks were underpredicted in 13 of 25 MOS. The 

most severe underpredictions of fairness were for females performing traditional work in the 

administrative and clerical areas. In testing for statistical significance using t-tests for the PE 

model, 16 of 25 MOS for females and 9 of 25 for blacks were found significant at the .05 level or 

higher. The correlation between the PE fairness model and Cleary model across the 25 MOS 

was .95 for females and .90 for blacks. 

Conclusions 

The authors found that overall the two models could be considered comparable as 

measures of fairness, while preferring the greater precision of the PE model with its reliance 

upon individual scores. Because the prediction error differences were, in general, small, they 

were not of practical significance in selection or for setting minimum enlistment scores (i.e., 

cutoff scores). The same differences, however, might well have implications for classification 

decisions within a classification optimization framework. 
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INTRODUCTION 

Background 

This report describes three methods that may be used to determine the fairness of the 

ASVAB test composites for 26 out of 66 MOS previously shown to have statistically significant 

prediction error scores by gender and race (Zeidner, Johnson, Vladimirsky and Weldon, 2004). 

The methods compared are the Prediction Error method (Zeidner, Johnson, Vladimirsky and 

Weldon, September, 1998 and Zeidner et al., 2004), the Cleary method or Regression Model 

(Cleary, 1968), and the Thomdike method or Constant Ratio Model (Thomdike, 1971). The 

three definitions of prediction fairness differ in several important ways. 

Fairness is traditionally defined as the absence of underpredictions for the minority group 

for which discrimination potentially exists (Cleary, 1968). Thus, if a test is used for selection 

and is underpredicting minority group performance, members of a minority group may be 

rejected for a job that they were capable of performing successfully. 

For the PE method, fairness is defined as the difference between predicted Skill 

Qualification Test (SQT) scores using the regression weights computed in the total group and 

actual SQT scores for the total group. These differences are computed for female or black 

subgroups within the same MOS, depending on whether racial or gender bias is being 

investigated. Complete fairness is indicated by very small differences, and fairness to minorities 

is present when mean difference in the minority group is zero or has a positive sign 

(overprediction). For the Clearly model, differences in total and minority group regression 

equations are used to measure fairness. Thomdike (1971) uses a modified model of fairness that 

holds a selection measure is fair only if the success ratio for a specified criterion equals the 

selection ratio. Cascio (1991) gives an example: "if 40% of the minority group members are 



successful and 70% of the non-minority group members are successful, the proportion of 

minority group members selected should match the 40:70 success ratio" (p 183). 

In this study fairness is measured at the individual level and then aggregated to the MOS 

level. This is readily accomplished with the PE method where the basic measure is a difference 

computed at the individual level. While the Cleary method is usually described in terms of the 

distance between two regression lines, this difference is equal to the aggregation of differences 

between pairs of predicted scores at the individual level. The Thomdike method calls for a 

comparison of two numbers computed for a group; one of these numbers can be subtracted from 

the other to provide a scale that is zero at the point of perfect fairness. This scale can be further 

adapted to provide fairness scores for individuals (i.e., differences between the above two 

numbers when aggregated over a group). It is this adapted scale for individuals that could be 

utilized in the Thomdike method and compared to the PE and Cleary methods. 

The need for this studv arises from concern that the traditional models used to determine 

fairness evolved in the context of selection. In contrast, Zeidner et al. (1998, 2004) employ a 

classification approach that uses the full range of test composite scores. Moreover, there is a 

need to examine the general findings in fairness studies showing overpredictions for minority 

groups as contrasted to the earlier findings of our PE method that consistently show more 

underpredictions than overpredictions for females and blacks (Zeidner et al., 1998,2004). In the 

present study, the PE and Cleary models are compared for classification and evaluated by a 

common metric on the same robust database in a double cross-validation design permitting 

unbiased estimates of the PE fairness measures.   A double cross validation design was not used 



for the original Cleary measvires since only back sample designs were described in the published 

studies.' 

The focus of all fairness models is, generally, to reliably and ethically differentiate 

between actual and predicted job performance for all groups of individuals. Acceptability is a 

continuing problem of consequence for fairness measures that use different standards or separate 

regression equations for minority and total groups. The military, goverrunent agencies, and 

business organizations would most likely find such methods unacceptable. Despite the goal to 

improve job performance through the use of tests, social policy, employment law and ethical 

considerations make it essential not to discriminate against minority groups in making personnel 

decisions. 

Cascio (1991) describes in some detail five fairness models (firom about a dozen) 

concluding that "there is more than one reasonable definition of selection fairness and the 

definitions have different practical and ethical implications that may conflict. Moreover, these 

are irreconcilable among various ethical positions...." (p. 185). Cascio, Outzz, Zedeck and 

Goldstein (1991) make the same point with regard to the use of test bands or intervals. Guion 

(1991, 1998) provides an excellent discussion of bias and fairness distinctions and problems. 

Guion (1998) points out that "test bias is a psychometric term referring to distortion from 

different imwanted sources of variance in scores from different groups. Adverse impact is a 

social, political, or legal term referring to an effect of test use" (p. 442). Adverse impact, Guion 

writes, occurs for a number of reasons and proceeds to list six of them, including bias. However, 

' In Cleary's seminal publication of 1968, she evaluated black and white college student groups, regardless of 
gender. At the end of the first year of college, she obtained SATs (the predictors) and GPA (the criteria). Students 
were at three state supported colleges. The students were separately analyzed for each college. Blacks totaled 273 
and there were over 2,000 white students. The authors of the present study believe that it is fair to say that the 
minority students were very carefully selected on the basis of grades, motivation, and other relevant factors. In this 
academic context, Cleary found that in two of the colleges there were not significant differences in the regression 
lines for blacks and whites. In one college, however, blacks were overpredicted using the common regression line. 



he points out that it would be necessary to rule out the other five before accepting bias only as 

the cause. Guion suggests a variety of statistical tools for bias analysis including analysis of 

variance, factor analysis of various types, and differential item functioning. He also cautions that 

in criterion-related validation, we need to insure that the criterion is free from third-variable 

biases and also emphasizes how difficult it is to accomplish this goal. 

Guion (1998) goes on to write that "A special issue of the Journal of Education Measure 

(Jaeger, ed., 1976) may have stilled debate over the models; it demonstrated the fiitility of 

looking to statistical models to answer political or social questions. Most participating authors 

looked to more rational, explicit values and the development of decision algorithms to maximize 

both organizational and social utilities" (p. 442). Clearly the fairness models are models of test 

use, not models of bias inherent in test scores. 

Gottfredson (1998), writing on the fairness of tests, points to the crux of the issue: 

The vulnerability of tests is due less to their limitations for measuring important 
differences than it is their very ability to do so.... Keeping the spotlight on tests 
merely forestalls the real debate - can this society justly and constructively deal 
with the racial and ethnic differences in ability that will be with us for some time 
to come? (p. 294). 

Prediction Fairness in Military Studies 

McLaughlin, Rossmeissl, Wise, Brandt, et al. (1984) basically followed the Cleary (1968) 

method of examining fairness using regression lines. However, they compare black regression 

lines against white lines and female regression lines against male lines (rather than total group 

against minority group lines as Cleary does). Even though "the Army does not use separate 

black and white regression lines to select and classify enlisted personnel," they point out that 

"the relation becomes important when significant differences between the subgroup lines exist" 

(p. 60). They go on to assert that a "ten-point difference in their composites [when comparing 



two individuals] would not affect either person's selection or classification" (p.60). However, 

McLaughlin et al. are really not addressing the classification problem. It is clear that the aptitude 

area composites were being used only as an additional selection procedure at that time and for 

establishing minimum cutoff scores for entrance into training programs; in fact, the AFQT 

(Armed Forces Qualification Test) is used to select recruits in the youth population for military 

service, and most such cutoff scores were set so low as to have little effect. 

Wise, Welsh, Grafton, Foley, et al. (1992), examining the technical composites of the 

ASVAB, foimd that whites had statistically significantly higher expected criterion scores than 

blacks in the military services. The authors state that while the differences are of statistical 

significance (in these large samples), they are of limited practical significance, being only about 

one-tenth of a standard deviation. The overall results also showed that males had higher 

expected criterion scores than females (except at the highest level of the selection composite 

scores). 

The McLaughlin et al. study found, in general, significant overpredictions for blacks that 

were consistent with the Wise et al., 1992, study, but not in accord with the Zeidner et al., 1998, 

2004 findings showing more underpredictions of MOS using least-squares estimation (LSE) 

composites. McLaughlin et al. did find three aptitude area composites - clerical (CL), operators 

/ food (OF), and surveillance / communication (SC) - wdth significant underpredictions for 

females, findings that are generally consistent with the Wise et al., 1992, and Zeidner et al., 

1998,2004 studies. The CL composite fairness underprediction for females in McLaughlin et al. 

had the largest difference among all the aptitude areas, but the authors conclude that the use of 

the aptitude area composites would not result in unfair practices against blacks or females. It is 

interesting to note that both the McLaughlin et al. and our earlier PE studies found significant 



es 

underpredictions for females in the aptitude areas corresponding to the most traditional area of 

work: clerical and administrative. 

In evaluating prediction error scores (PEs) resulting from operational assignment to MOS 

and job families, Zeidner et al. (2004) found a distinct pattern of underpredictions for blacks and 

females. In testing for statistical significance, eleven PE means were found to have statistically 

significant differences from zero at the .05-level for the set of 66 MOS. For females, 17 MOS 

had statistically significant underpredictions among the 50 MOS containing females. Perhaps 

more importantly, in testing mean differences, prediction error differences for blacks and femal 

were too small to have practical significance for selection. For blacks, the overall mean 

prediction error was -.019 of a standard deviation across the 66 MOS or .38 in Army aptitude 

area (AA) standard score units. (Aptitude areas have a mean of 100 and a SD of 20 in the youth 

population.) For females, the mean prediction error was -.108 of a standard deviation or 2.16 in 

AA standard score units. 

These fairness findings for minorities are consistent with research findings in both 

civilian employment and military settings that are depicted in terms of regression line 

differences. These differences were primarily due to differences in intercept values. Such 

differences were also found in Zeidner et al. (1998). Lower test scores for minorities appear to 

be a relatively common phenomenon. In Zeidner et al., minority groups were underpredicted 

when prediction errors were based on the LSE test weights estimated across all individuals, as is 

appropriate for an operational military system. 

The overall conclusion in the Zeidner et al. 1998, 2004 studies, then, was that the LSE 

composites (adopted in January 2002) provided substantial improvements in classification 

efficiency over the earlier unit-weighted composites, with little practical consequence for the 



selection process as a result of underpredictions found for minorities. Other distinctions among 

the models are noted below and in the Methods section. 

General Approach 

The primary objective of this study is to compare the PE and Cleary methods using a 

common database for assessing the effectiveness of fairness measures. The results already 

provided by our PE method from previous fairness study reports (Zeidner, et al., 1998; 2004) are 

expanded to include the resuhs from the Cleary method. A common metric, referred to as CM, is 

used in conjunction with both the PE and Cleary fairness methods, along with "t-tests" computed 

for the differences of the PE fairness means in each minority group from the PE faimess means 

in the total sample of each MOS. The Thomdike method for determining racial and gender 

faimess will be discussed as an alternative to the PE and Cleary methods but will not be 

evaluated in the present study. 

Comparison of Prediction Fairness Methods 

The three models of faimess result in different indices of faimess because of differences 

in definitions of faimess and methods of computing both the predictor and criterion variables 

used to implement these definitions. Cleary's definition of faimess is: 

A test is biased for members of a subgroup of the population if, in the prediction 
of a criterion for which the test was designed, consistent nonzero errors of 
prediction are made for members of the subgroup. In other words, the test is 
biased if the criterion score predicted from the common regression line is 
consistently too high or too low for members of the subgroup. With this 
definition of bias, there may be a connotation of "unfair," particularly if the use of 
the test produces a prediction that is too low. If the test is used for selection, 
members of a subgroup may be rejected when they were capable of adequate 
performance (p. 115). 



Schmidt and Hunter (1974) write that the Cleary definition came to be accepted by most 

working in this area. In Guion's (1998) view, "the Cleary model has generally been accepted as 

perhaps the best of a poor set of choices" (p. 442). 

Thomdike's (1971).definition of fairness contends that a test is fair only if, for a specified 

level of criterion performance, the selection measure provides the same proportion of minority 

applicants that would be selected by the criterion itself Thomdike holds that when two groups 

differ in mean test score, the test may be unfair to the lower scoring group as a whole "in the 

sense that the proportion qualified on the test may be smaller, relative to the higher scoring 

group, that will reach every specified level of performance" (p. 63). 

We note that our PE method in the present research appears to differ fi-om the above 

definition of Cleary's method. The PE method uses the MOS total group regression parameters 

to estimate predicted scores, finds the difference between these predicted and the actual criterion 

scores, and applies these total group parameters in calculating predicted versus actual differences 

for minority subgroups. In contrast, Cleary's method finds the difference between the MOS total 

prediction (or regression line) and the prediction (or regression line) computed within the 

minority group. In effect, she obtains the difference between the predicted performance of an 

individual considering the individual to be a member of the minority subgroup and a second 

predicted performance considering the individual to be a member of the total group. Both 

predicted performance scores are least square estimates of the criterion based on "composite" 

scores. 

Discussion of Fairness Concepts 

As noted, in general, when predictor scores are larger than criterion scores, the condition 

of overprediction exists; when predictor scores are smaller than criterion scores, the condition of 



underprediction exists. For a given minority individual with a vector of test scores, the 

prediction based on total group parameters yields a higher predicted score than does the 

prediction based on black / female group parameters (because parameters computed in the total 

sample are larger than those computed in a minority sample). The Cleary fairness measure is 

equal to the difference between these two predicted scores, and can be expected to be smaller 

when there is more overlap between the two samples on which the parameters are computed. 

Intuitively, this difference between the two predictors will be smaller when the prediction based 

on the MOS total sample has a greater proportion of blacks or females (as with the Army as 

contrasted to the other services). Thus, one can expect to find more underprediction based on the 

Cleary fairness measure using a total group predictor that has a higher proportion of black or 

female individuals than using a predictor based on a lower proportion of black or female 

individuals (e.g., the other services). 

Also, many of the earlier studies on fairness focused on the lower end of the regression 

line - since their concern was v^th initial selection, rather than with classification. Obviously 

selection occurs at the low end of the regression line. In contrast, classification occurs over the 

entire distribution of predictor scores. The methodology of these earlier investigators may often 

find overpredictions among the low scorers where the standard error of measurement may differ 

fi-om those individuals found higher on the predictor distribution. Finally, the present authors 

believe that the use of prediction error scores (the PE method) more precisely measures the 

degree of over- or underpredictions rather than just observing the occurrence of over- and 

imderpredictions through comparison of regression equations. 



OBJECTIVES 

The present study is designed to obtain fairness scores for several methods across 26 

MOS using composites based on seven LSE-weighted ASVAB tests. While gender and race 

data were available for 66 MOS and 9 job families, only 26 MOS had statistically significant 

fairness results for minority groups in the earlier study (Zeidner, Johnson et al., 2004). The 66 

MOS parent database was selected as being the only robust data set extant containing race and 

gender information for individuals along with other required variables available to the 

researchers. The specific objectives are: 

1. To compare the results of measuring gender and racial fairness using the PE and Cleary 

fairness measures and an associated common metric for each model, using MOS previously 

found to provide statistically significant results for the PE fairness measure in the context of 

classification (i.e., using the fiill range of test scores). 

2. To indicate the importance of the findings to the choice of test and test composites for use in 

future operational systems of the selection, classification and assignment of recruits to the 

Army. 

METHOD 

Description of Data: SQT 

Prior to 1983, the Skill Qualifications Test (SQT) had both written and hands-on 

components measuring job proficiency. After 1983, the SQT was designed only as a task-based 

written test of job proficiency. Soldiers were required to take the SQT annually after completing 

11 months or more of service.^ 

In a related study, SQTs were found to be equivalent to specially developed hands-on performance measures used 
as criteria m Project A (Zeidner, Scholarios and Johnson, 2003). Equivalence was defined as making the same 
decisions or as having similar outcomes employing either criterion. 

10 



ARI's database for SQT years FY 1987 - 1989 was used to obtain a sample of 83,132 

Skill Level 1 soldiers in 66 MOS. At the time of this study, those years were considered by ART 

to be psychometrically good SQT years in terms of discriminability and reliability of the 

measures. 

As mentioned, twenty-six (of these 66) MOS were selected on the basis of earlier results 

(Zeidner, Johnson, et al., 2004) for the current study. Those selected had critical ratios of 1.99 or 

higher for the PE fairness score differences between black and white groups, or male and female 

groups. McNemar (1949, pp 63-66) describes critical ratios of the type used to make this 

selection. As shown in Table 1, the sample size for the total of these 26 MOS is 36,328. 

A double cross-validation design permitting complete unbiased estimates of prediction 

fairness is used. Each MOS sample is divided randomly into half samples for use in a double 

cross-validation design. The criterion variable is corrected for attenuation, and standardized to 

have a mean of zero and a standard deviation of one within a single MOS. Regression weights 

are computed in one half of each MOS sample and applied to scores in the other half to obtain 

least square estimates of the criterion. The results from the two cross samples are then 

aggregated. 

Composite Scores 

The predictor scores used for both the Cleary (and Thomdike) methods are a function of 

all 7 ASVAB tests, computed separately for each MOS, and referred to as composite scores. 

"Composites" are the sum of "best" weighted ASVAB test scores that have been converted to 

Army standard scores in the youth population (YP).   The "best" weights used in creating these 

composites are least square regression weights for predicting SQT scores. These composites are 

See Appendix A for details of the conversion process. 
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used as the single predictor for computing black, female, and MOS total group prediction scores 

in the Cleary faimess measures. 

The least square estimates of the SQT criterion, computed as a ftmction of the composite 

scores for the Cleary measure and proposed Thomdike adaptation, are in the form  y = bx + c, 

where y is a composite score computed by applying a weight to each operational test score (x) 

and adding a constant. These converted best weighted test scores are calculated to provide Army 

standard scores (mean of 100 and SD of 20) in the youth population (YP), and the b weights 

applied to these converted test scores are equal to the validity of the composite scores multiplied 

by the SD of the criterion and divided by the SD of the composite scores, after correcting the 

validity coefficient and both SDs for restriction in range to the YP.   LSE parameters, b and c, are 

computed for the MOS total group, and for each race and gender subgroup. 

Prediction Fairness Measures 

The prediction error (PE) method faimess score for each individual equals the total group 

LSE score for that individual minus his or her criterion score, after both scores are converted to 

statistical standard scores (separately for each MOS). The PE method computes a best fitting 

regression line based on the 7 test scores, enters the individual's test scores into this ftmction to 

obtain a predicted performance (PP) score, and then converts this PP score into a statistical 

standard score (a mean of zero and a standard deviation of 1.0 within the total MOS). This 

makes both of the variables used to compute the PE faimess measure into statistical standard 

scores. A negative (positive) difference score indicates underprediction (overprediction) for the 

individual, and a negative (positive) mean difference indicates underprediction (overprediction) 

for the group. 

12 



A Cleary fairness score for each individual equals the difference between a LSE score 

computed in the minority group of a MOS and the LSE score computed in the total MOS group. 

The mean of these difference scores computed for a minority group is the conventional Cleary 

gender or race fairness score for the MOS.   This mean is an algebraic equivalent to the average 

distance between the regression line that predicts the criterion in the minority group and the 

corresponding regression line for the total group. A negative difference score indicates 

underprediction for an individual and a negative mean of these differences indicates 

underprediction for the minority group. Positive differences similarly indicate overprediction, 

and zero differences indicate complete fairness."* 

Correction of Validities 

The validities in this study were corrected for restriction in range separately by MOS. 

Range restriction was due to operational assigrmient effects, the restriction in range impact of 

assignment to MOS from a common entry pool (see Appendix B). Since the PE method of the 

present study uses the Army input sample rather than the youth population as the basis for 

making this correction, no further correction is made for restriction due to selection effects; in 

the Cleary (and Thomdike) methods, validities are additionally corrected for selection into the 

" The Thomdike measure of prediction fairness is computed by first obtaining the number of individuals 
having predictor scores greater than a specified predictor cut score. Then the number of individuals having criterion 
scores greater than the LSE of the criterion score corresponding to the "specified predictor score" is subtracted from 
the first number. Complete fairness is indicated when this difference is equal to zero. This aggregated measure 
shows underprediction when negative and overprediction when positive. The individual scores for this Thomdike 
measure are equal to -1, 0, or+1. 

A score for each mdividual in black and female subgroups of each MOS that, when summed over the 
group, becomes the Thomdike fauness is computed by using the following procedure. Fu-st, a Thomdike predictor 
value (TPV) score is obtained by subtracting 100 (our designated cut score) from each individual's composite score 
and convert all negative differences to -1, zero differences to 0, and positive differences to +1. Similarly we obtain 
a Thomdike criterion value (TCV) score by subtracting the total group LSE, a f(x) using x equal to the predictor cut 
score, from the individuals MOS criterion score, and again converting all positive scores to 1.0, all negative scores 
to -1, and all zero scores to 0. The Thomdike faimess score (TFS) can now be computed for each mdividual; TFS = 
TPV minus TCV. Each mdividual will have a -1, a 0, or a + 1 as a TFS score. Note that a score of zero which 
indicates perfect famiess for PE and Cleary fairness scores may indicate either perfect faimess or no information on 
faimess for the Thomdike faimess measure. 
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Army. Validities are also corrected for unreliability of the criterion variable prior to the 

restriction in range correction. For these and other scaling differences, the three methods cannot 

be compared directly with each other, hence the use of a common metric. 

A Common Metric 

An effective comparison of the PE and Cleary methods requires the use of a common 

metric, since the scales of the two measures are not equal. A useful metric to this end is one for 

which the magnitude of over- and underprediction can be compared across the three methods. 

Each common metric (CM) measuring prediction fairness is computed separately for both 

faimess measures, and separately for black and female groups within each of the 26 MOS. The 

CM is defined as the number of individuals in a minority group that are underpredicted by the PE 

or Cleary faimess measures. This is simply the number of negative faimess measure scores in 

each of the minority subgroups for each MOS. For the Thomdike faimess measure, this is the 

number of individual fairness scores equal to -1. 

A Test of Statistical Significance 

Both the PE and Cleary methods in this study, as well as would be the case for the 

Thomdike method, are zero at the point of perfect faimess for both the individual and group 

level. For each of these faimess methods a "t-test" can be computed for each job family 

reflecting the significance of the difference between the mean faimess measure computed in a 

minority sample of a MOS and a mean faimess measure assumed to be the population value for 

that MOS. The mean faimess measure in the total sample is our best estimate for this population 

value. These "t-tests" are computed only for the PE faimess measures.^ 

We did not include t-test values for the CFM in Tables 3 and 4 because these faimess measures are partially a 
function of group membership, in contrast to the PE measures that are obtained independently of knowledge of 
group membership.   In other words, Cleary t-tests would have been biased towards higher values. We however 
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A separate t-test score is computed for female and black sub-samples of each of the 26 

MOS. These scores can be used to estimate the statistical significance of the differences of PE 

fairness score means in each minority sub-sample from the population. This population mean is 

estimated using the mean fairness measure in the MOS total sample. The t-test score is 

computed as a function of the minority group sample size (N), standard deviation (SD) of the 

measure in the minority group, and the difference of the minority group and total means. The 

simplified formula utilized to compute these t-test values for each MOS is as follows: 

CR = [(N)'^"^ ] [(difference between means) / SD] (Ostle & Mensing, 1975). It should be noted 

that these t-test values differ from the CRs used to select the 26 MOS (for closer inspection in 

this study) from the larger set of 66 MOS.^ 

(continued) include in Appendix C the nature of the bias that consists of overlapping information in CFM scores 
and subgroup means. This overlap, in turn, inflates both the correlation between CFM and group membership and 
the size of the t-tests. The effects of the inflation of the t-test due to the use of ingredients that are inflated (by being 
computed in the same sample as regression line parameters are computed) are an additional contamination. Both 
reasons make the t-tests for the Cleary model unsuitable for use as significance tests. We, however, show the 
inflated Cleary t-test results in Appendix D. Note, also, the CFM for a minority group decreases as the ratio of the 
minority group size to the total group size decreases as shown in Appendix E. 

* The critical ratios described in the earlier report are for the differences between fairness means for black and white 
groups, and between male and female groups, while the t-tests used to test the significance of the mean PE fairness 
are for the differences between a minority group and the total group. 
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RESULTS AND DISCUSSION 

Description of MOS 

Table 1 lists the 26 MOS by number and name used in this study. As noted earlier, these 

MOS were selected from a larger sample of soldiers in 66 MOS on the basis of having 

significant critical ratios of 1.99 or higher for the PE differences between male and female 

groups or white and black groups in an earlier study (Zeidner et al., 2004). Table 1 also shows 

the N for each sample and the total N of 36,328. The average sample size of the 26 MOS is 

1337, although a couple of MOS are small, e.g., 33T has an N = 71 and 81E has an N = 129. 

For most MOS, the size of minority group Ns range from 30 to 2015. 

Prediction Error Measured for 26 MOS for the PE Method 

Table 2 shows the mean prediction error (PE) scores or PE fairness measures in each of 

the 26 MOS. It also shows the t-test and common metric scores (CM). CM shows the number 

of minority individuals in each MOS that are underpredicted as a percentage. 

At the end of Table 2 are shown the grand overall arithmetic and absolute mean PE 

fairness measure.   Also shown are the number of mean over- and underpredictions by subgroup. 
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Table 1 

Number of First-Term Enlistees Assigned to Each of 26 MOS by Gender and Race in the FY1987- 1989 Data Set 

Percent 

MOS Name Male Female White Black N 

100.00 0.00 91.20 8.80 375 

88.53 11.47 82.44 17.56 279 

92.04 7.96 60.62 39.38 2,750 

92.48 7.52 70.79 29.21 1,729 

95.77 4.23 98.59 1.41 71 

97.87 2.13 83.54 16.46 328 

95.45 4.55 78.20 21.80 2,394 

92.30 7.70 72.45 27.55 1,078 

91.40 8.60 72.25 27.75 919 

91.01 8.99 73.98 26.02 4,439 

96.73 3.27 83.65 16.35 367 

68.73 31.27 80.00 20.00 550 

31.11 68.89 46.80 53.20 765 

66.05 33.95 79.05 20.95 377 

78.68 21.32 58.31 41.69 638 

49.92 50.08 59.78 40.22 649 

56.20 43.80 54.69 45.31 799 

68.16 31.84 53.24 46.76 1,542 

34.07 65.93 41.86 58.14 989 

94.17 5.83 58.34 41.66 2,403 

83.92 16.08 56.84 43.16 4,279 

62.79 37.21 83.72 16.28 129 

87.99 12.01 59.29 40.71 533 

83.41 16.59 72.96 27.04 1,790 

81.04 18.96 46.79 53.21 3,787 

86.91 13.09 92.11 7.89 2,369 

13M Multiple Launch Rocket Sys (MLRS) Crewmember 

16D Hawk Missile Crewmember 

3 IK Combat Signaler 

31V Unit Level Communications Maintainer 

33T EW/I Tactical Systems Repairer 

45K Tank Turret Repairer 

52D Power Generator Equipment Repairer 

54B Chemical Operations Specialist 

55B Ammunitions Specialist 

63B Light-Wheel Vehicle Mechanic 

68J Aircraft Armament/Missile Systems Repairer 

7ID Legal Specialist 

71L Administrative Specialist 

71M Chaplain Assistant 

72E Tactical Telecommunications Ctr Op 

72G Automatic Data Telecommunications Ctr Op 

73 C Finance Specialist 

75B Personnel Adniinistration Specialist 

75D Personnel Records Specialists 

76C Equipment Records and Parts Specialist 

76Y Unit Supply Specialist 

81E Graphics Documentation Specialist 

88H Cargo Specialist 

91A Medical Specialist 

94B Food Service Specialist 

95B Military Police 

Total (percent) 83.16       16.84      65.41       34.59 100.00 

Total (N) 30,209      6,119     23,761     12,567 36,328 
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Table 2 

Mean Prediction Errors (Fairness Measures) and Common Metric (CM) for PE Method          

CM. Percent Individuals 
t-test Underpredicted 

Female Black Female Black 
13M 
Mean 
SD 
N 
% 

Prediction Error Scores 
Female Black 

0.000 
0.000 

0 
0.00 

-0.250 
0.653 

33 
8.80 

0.000 -2.199* 00.0 72.7 

16D 
Mean 
SD 
N 
% 

0.125 
1.105 

32 
11.47 

-0.336 
0.749 

49 
17.56 

0.638 -3.137 46.9 71.4 

31K 
Mean 
SD 
N 
% 

-0.016 
0.888 

219 
7.96 

-0.046 
0.902 
1083 

39.38 

-0.260 -0.260 55.3 54.7 

31V 
Mean 
SD 
N 
% 

0.320 
0.853 

130 
7.52 

-0.112 
0.880 

505 
29.21 

4.28 P -2.849* 34.6 58.0 

33T 
Mean 
SD 
N 

-0.349 
0.666 

3 
4.23 

-0.665 
0.000 

1 
1.41 

-0.908 -0.000 33.3 100.0 

45K 
Mean 
SD 
N 

-0.606 
0.786 

7 
2.13 

-0.015 
1.026 

54 
16.46 

-2.041^ -0.107 85.7 51.9 

52D 
Mean 
SD 
N 

-0.153 
0.786 

109 
4.55 

-0.101 
0.796 

522 
21.80 

-2.038* -2.884** 56.9 55.2 

Notes 
CM, Common Metric - percentage of minority individuals underpredicted 
[^    Statistically significant at .05 level 

Statistically significant at .01 level 
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CM. Percent Individuals 
Prediction Error Scores t-test Underpredicted 
Female               Black Female Black Female               Black 

54B 
Mean -0.189 0.065 
SD 0.889 0.794 
N 83 297 
% 7.70 27.55 

55B 
Mean -0.176 -0.084 
SD 0.632 0.834 
N 79 255 
% 8.60 27.75 

63B 
Mean 0.230 -0.041 
SD 0.819 0.814 
N 399 1155 
% 8.99 26.02 

68J 
Mean -0.230 -0.271 
SD 0.654 0.725 
N 12 60 
% 3.27 16.35 

71D 
Mean -0.251 -0.058 
SD 0.917 0.846 
N 172 110 
% 31.27 20.00 

71L 
Mean -0.153 0.023 
SD 0.888 0.961 
N 527 407 
% 68.89 53.20 

71M 
Mean -0.134 0.062 
SD 0.861 1.072 
N 128 79 
% 33.95 20.95 

72E 
Mean -0.131 -0.123 
SD 0.845 0.910 
N 136 266 
% 21.32 41.69 

-1.941 1.409 61.4 48.2 

-2.477* -1.603 64.6 56.5 

5.605" ■1.725* 40.9 53.9 

-1.220 -2.900* 58.3 75.0 

-3.594** -0.714 61.0 53.6 

-3.962** 0.485 61.5 54.1 

-1.759* 0.517 60.2 50.6 

-1.805* -2.201^ 52.9 55.3 
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Prediction Error Scores t-test 
CM. Percent Individuals 

72G 
Mean -0.120 
SD 0.823 
N 325 
% 50.08 

73C 
Mean -0.148 
SD 0.887 
N 350 
% 43.80 

75B 
Mean -0.184 
SD 0.885 
N 491 
% 31.84 

75D 
Mean -0.047 
SD 0.935 
N 652 
% 65.93 

76C 
Mean -0.025 
SD 1.021 
N 140 
% 5.83 

76Y 
Mean -0.266 
SD 0.839 
N 6^8 
% 16.08 

81E 
Mean -0.217 
SD 0.899 
N 48 
% 37.21 

88H 
Mean -0.163 
SD 0.864 
N 64 
% 12.01 

91A 
Mean -0.230 
SD 0.936 
N 297 
% 16.59 

Female Black Female Black Female 
Underoredicted 

Black 

0.014      -2.633**     0.249      58.5       510 
0.885 
261 

40.22 

-0.024      -3.117**    -0.510      58.0       50 8 
0.898 
362 

45.31 

-0.012      -4.599**    -0.364      62.5       52 4 
0.894 
721 

46.76 

0054      -1.277      1.311      53.5       50.4 
0.979 
575 

58.14 

-0.072      -0.289      -2.833**    58.6       57] 
0.803 
1001 
41.66 

-0.007      -8.312**    -0.301      65.8       55 1 
0.944 
1847 
43.16 

0.150      -1.670      0.844      62.5       42 9 
0.815 

21 
16.28 

-0.118      -1.506      -1.821      56.3       53 9 
0.953 
217 

40.71 

0.036      -4.245**     0.852      61.3       49 0 
0.930 
484 

27.04 
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CM. Percent Individuals 
Prediction Error Scores t-test Underpredicted 
Female               Black Female Black Female               Black 

94B 
Mean -0.222 
SD 0.876 
N 718 
% 18.96 

95B 
Mean -0.179 
SD 0.877 
N 310 
% 13.09 

Grand 
Arithmetic Mean -0.128 
Grand 
Absolute Mean 0.173 

Overpredictions 3 
Underpredictions 22 

-0.040      -6.779**    -2.155*     65.0       55.3 
0.830 
2015 
53.21 

0.099      -3.585**     1.388      62.6       47.1 
0.977 
187 
7.89 

-0.033 

0.050 

8 
18 
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The PE fairness score is computed for each individual and then the mean score is 

computed by minority subgroup within an MOS. Each MOS total sample has converted 

prediction scores with a mean equal to zero and a SD equal to one within the sample. Since the 

criterion (SQT) scores also were standardized within an MOS to have a mean of zero and a SD 

of one, this permits us to have equivalent scales for computing PE fairness measures. Thus, 

while the PE means in the total MOS sample are zero, the minority subgroups for each MOS 

may have negative or positive mean PEs. 

It can be seen by the summary at the end of Table 2 that 22 of 25 MOS have mean PE 

fairness measures indicating underpredictions for females. Of these underpredictions, 16 mean 

PE fairness measures were found to be statistically significant for females at either the .01 or .05 

level. Additionally, in 21 of 25 MOS, 50 percent or more of the female individuals in an MOS 

were underpredicted. 

The six jobs with the highest levels of statistical significance for the PE fairness measure 

were all underpredicted in the female sub-sample. Females made up 17 percent to 68 percent of 

the total number employed in these jobs compared to an average of 10 percent female 

employment for all 25 jobs. It should be stressed that these six jobs with the largest negative 

statistical significance fall within job types considered traditionally female jobs in administrative 

and clerical areas, including MOS in Unit Supply, Food Service, Personnel Records, Legal, 

Medical and Personnel Administration. Only 3 of the 25 MOS had positive mean PE fairness 

measures, showing overprediction, in female sub-samples. The performance underpredictions 

reported here are not uncommon in the military, while underpredictions in the civilian literature 

are relatively uncommon. 
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Although the grand overall arithmetic mean PE for females is -0.128 and not of practical 

significance for determining minimum cutoff scores for selection, it is, however, important for 

classification or MOS job assignment when an optimization procedure is utilized. The 

underprediction of female performance, again, is of particular concern because it is most 

prevalent for traditional female jobs. 

In Table 2, it can be seen that 18 of 26 MOS were underpredicted for blacks. Of the 18 

MOS, 10 MOS show statistically significant t-test results. Also, in 23 of 25 MOS, 50 percent or 

more of black individuals were underpredicted in each MOS. However, unlike the findings for 

females, the fairness measures do not have a distinct pattern of job types. 

Cleary Model for Fairness Measures 

The Cleary fairness measure (CFM) is computed as the difference between two 

regression lines. For each MOS, the parameters (b and c) described in the Methods section are 

computed in the total MOS sample for one line and the parameters for the other line are 

computed in either the female or black sample of that MOS. The difference between the line 

with female or black subgroup parameters and the line with total group parameters produces a 

female or black CFM score for each individual. 

From the results of Table 3 for the Cleary fairness measures, we find 22 of 25 MOS are 

underpredicted by female CFMs. These CFM results appear quite similar to those obtained for 

the PE models for female sub-samples (where a like number of MOS were imderpredicted). 

Also in 21 out of 25 MOS, over 50 percent of the members of the female sub-sample were under 

predicted by the composite scores as measured by the CFMs. 

From Table 4, we see imderpredictions for blacks using the CFM in 12 of 25 MOS 

compared to underpredictions using the PE method in 18 of 25 MOS. These findings for blacks 
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are not quite as similar to the PE results (as was true for females when the two methods are 

compared). However, the black CFM means computed in the sub-samples, in general, had high 

negative values and the PE based t-tests had statistically significant levels for the same 

administrative and clerical jobs as were found to be underpredicted when measured by PE 

fairness measures or CFMs. The pattern of fairness measure magnitudes for blacks, across 

different MOS, appears more diffuse - a pattern not as clearly discernible as fairness measures 

for females. 
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Table 3 
Mean Fairness Measures and Common Metric (CM) for Females for Cleary Model                                                                 \ 

Cleary Fairness Measure CM, Percent 
Individuals Total Sample 

Subgroup Mean Mean Underpredicted 

13M 
Mean 0.000 0.000 0.0 
N 0 
% 0.00 

16D 
Mean 0.181 0.216 0.0 
N 32 
% 11.47 

31K 
Mean 0.022 -0.001 18.7 
N 219 
% 7.96 

31V 
Mean 0.380 0.376 0.0 
N 130 
% 7.52 

33T 
Mean -0.289 -0.349 100.0 
N 3 
% 4.23 

45K 
Mean -0.513 -0.426 100.0 
N 7 
% 2.13 

52D 
Mean -0.077 -0.057 81.7 
N 109 
% 4.55 « 

54B 
Mean -0.123 -0.196 100.0 
N 83 
% 7.70 

Notes 
CM, Common Metric - percentage of minority individuals underpredicted 
Total Sample - - Means computed on two different samples using same parameters 
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55B 
Mean 
N 
% 

Cleary Fairness Measure cM, Percent 

Total Sample Individuals 
Subgroup Mean Mean Underpredicted 

-0.124 
79 

8.60 

-0.126 100.0 

63B 
Mean 
N 
% 

0.297 
399 

8.99 

0.226 0.0 

68J 
Mean 
N 
% 

-0.200 
12 

3.27 

-0.195 58.3 

71D 
Mean 
N 
% 

-0.195 
172 

31.27 

-0.186 100.0 

71L 
Mean 
N 
% 

-0.140 
527 

68.89 

-0.138 100.0 

71M 
Mean 
SD 
N 
% 

-0.108 
0.861 

128 
33.95 

-0.133 100.0 

72E 
Mean 
N 

-0.101 
136 

21.32 

-0.116 100.0 

72G 
Mean 
N 
% 

-0.120 
325 

50.08 

-0.126 100.0 

73C 
Mean 
N 
% 

-0.144 
350 

43.80 

-0.149 100.0 

75B 
Mean 
N 
% 

-0.151 
491 

31.84 

-0.149 100.0 
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Cleary Fairness Measure CM, Percent 

Subgroup Mean 
Total Sample 

Mean 
Individuals 

Underpredicted 

75D 
Mean -0.024 -0.024 100.0 
N 652 
% 65.93 

76C 
Mean 0.001 -0.028 44.3 
N 140 
% 5.83 

76Y 
Mean -0.249 -0.245 100.0 
N 688 
% 16.08 

81E 
Mean -0.180 -0.218 93.8 
N 48 
% 37.21 

88H 
Mean -0.122 -0.086 95.3 
N 64 
% 12.01 

91A 
Mean -0.198 -0.183 100.0 
N 297 
% 16.59 

94B 
Mean -0.182 -0.215 100.0 
N 718 
% 18.96 

95B 
Mean -0.112 -0.139 100.0 
N 310 
% 13.09 

Grand 
Arithmetic Mean 

-0.095 

Grand 
Absolute Mean 0.154 

Overpredictions 
Underpredictions 

4 
20 
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Table 4 

Mean Fairness Measures and Common Metric (CM) for Blacks for Clearv Model 

Cleary Fairness Measure                CM Pexcprw                                                                                    \ 
Total Sample          Individuals 

Subgroup Mean Mean             Underpredicted 

13M 
Mean -0.211 -0.192                  100.0 
N 33 
% 8.80 

16D 
Mean -0.263 -0.300                  100.0 
N 49 
% 17.56 

31K 
Mean -0.013 -0.005                    89.8 
N 1083 
% 39.38 

31V 
Mean ■  -0.057 -0.097                    94.3 
N 505 
% 29.21 

33T 
Mean 0.000 0.000                  100.0 
N 1 
% 1.41 

45K 
Mean 0.059 0.030                      0.0 
N 54 
% 16.46 

52D 
Mean -0.048 0.003                    80.8 
N 522 
% 21.80 

54B 
Mean 0.107 0.128                      0.0 
N 297 
% 27.55 

Notes 
CM, Common Metric -percentage of minority individuals underpredicted 
1 otal bample - - Means computed on two different samples using same parameters 
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 Cleary Fairness Measure      CM, Percent 
Total Sample Individuals 

 Subgroup Mean Mean Underpredicted 

55B 
Mean -0.069                       0.049                    73.3 
N 255 
% 27.75 

63B 
Mean 0.031                       0.023                      0.0 
N 1155 
% 26.02 

68J 
Mean -0.241                      -0.181                   100.0 
N 60 
% 16.35 

71D 
Mean 0.041                       0.112                    42.7 
N 110 
% 20.00 

71L 
Mean 0.044                       0.047                      0.0 
N 407 
% 53.20 

71M 
Mean 0.101                       0.092                      0.0 
SD 0.861 
N 79 
% 20.95 

72E 
Mean -0.092                       -0.089                   100.0 
N 266 
% 41.69 

72G 
Mean 0.023                       0.024                      0.0 
N 261 
% 40.22 

73C 
Mean -0.012                       0.026                 .  66.3 
N 362 
% 45.31 

75B 
Mean 0.020                       0.049                    44.2 
N 721 
% 46.76 
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Cieary Fairness Measure CM, Percent 
Total Sample Individuals 

Subgroup Mean Mean Underpredicted 

75D 
Mean 0.080 0.106 5.22 
N 575 
% 58.14 

76C 
Mean -0.040 -0.055 98.6 
N 1001 
% 41.66 

76Y 
Mean 0.011 0.014 .6 
N 1847 
% 43.16 

81E 
Mean 0.227 -0.016 23.8 
N 21 
% 16.28 

88H 
Mean -0.093 -0.025 80.2 
N 217 
% 40.71 

91A 
Mean 0.086 0.096 0.0 
N 484 
% 27.04 

94B 
Mean -0.008 0.007 72.85 
N 2015 
% 53.21 

95B 
Mean 0.200 0.266 0.0 
N 187 
% 7.89 

Grand 
Arithmetic Mean 0.004 

Grand 
Absolute Mean 0.039 

Overpredictions 13 
Underpredictions 12 

30 



Rank-Order and Intercorrelations 

Table 5A shows MOS rank-order results on fairness measures and CM indices for 

females for the PE and Cleary models. The four columns of rankings place a digit of one for the 

MOS with the highest negative value and a 25 or 26 for the MOS v^th the highest positive 

value. 

Table 5B shows the Pearson product moment intercorrelations for females among the 

rankings of the MOS in terms of the four variables. The correlation between the PE fairness 

measure and the CFM is .95, a very high correlation. Correlations among the other variables 

range between .54 and .60. The lowest correlation coefficient is .54 (between the two common 

metrics). This is an expected result partly attributable to the common metric itself- the 

percentage of individuals in each minority sub-sample. Many MOS were comprised of 

individuals with 100 percent being underpredicted. 

Table 6A shows MOS rank-order results on fairness measures and CM indices for blacks 

for the PE and Cleary models. Table 6B shows the Pearson product moment intercorrelations 

among the variables for blacks. Again, the correlation of .90 between PE fairness and CFM is 

the highest correlation among the four variables. Correlations among the other variables range 

from .81 to .90. 

Considering the intercorrelations among the two minority groups taken together, they can 

be characterized as moderately high to moderately. Most important is the very high correlation 

of .95 and .90 for females and blacks, respectively, between the PE and Cleary fairness 

measures.    In this context, it should also be noted that the grand arithmetic means are -.128 and 

-.033 for females and blacks, respectively, for the PE model (see the end portion of Table 2) 
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compared to -.095 and +.004 for the Cleary model (see the ends of Tables 3 and 4) - a mean 

difference of-.033 for females and -.029 for blacks. Again, these values indicate the closeness 

of the two fairness models despite differences in definition, scale and methods of computation. 

' In the event of ties, the rule followed is to assign to all MOS that are tied the average of the ranks that 
they would have received had they not been tied (Adkins, 1965, p. 84). 
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Table 5A 
Rank-Order of Two Variables each for PE and Cleaty Models for Females  

PE CM Cleary Fairness       Cleary's CM MOS PE Fairness 
16D 23 22 23 24 
31K 22 19 22 22 
31V 25 24 25 24 
33T 2 25 2 8.5 
45K 1 1 1 8.5 
52D 14 17 19 19 
54B 9 9 13 8.5 
55B 12 4 12 8.5 
63B 24 23 24 24 
68J 6 15 4 20 
71D 4 11 6 8.5 
71L 15 8 11 8.5 
7IM 17 12 17 8.5 
72E 18 21 18 8.5 
72G 19 14 15 8.5 
73C 16 16 10 8.5 
75B 10 6 9 8.5 
75D 20 20 20 8.5 
76C 21 13 21 21 
76Y 3 2 3 8.5 
81E 8 7 8 18 
88H 13 18 14 17 
91A 5 10 5 8.5 
94B 7 3 7 8.5 
95B 11 5 16 8.5 

Table 5B 
Intercorrelaiions of Four Variables for Females 

PE Fairness PECM Cleary Fairness Cleary CM 
PE Fairness 1.00 .60 .95 .55 
PECM .60 1.00 .58 .54 
Cleary Fairness .95 .58 1.00 .59 
Cleary CM .55 .54 .59 1.00 
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Table 6A 
Rank-Order of Two Variables each for PE and Cleary Models for Blacks 
MOS PE Fairness             PE CM Cleary Fairness Cleary's CM 
13M 4 2 3 2 
16D 2 3 1 2 
31K 12 11 10 7 
31V 7 4 7 6 
33T 1 0 13 2 
45K 16 17 20 21.5 
52D 8 9 8 8 
54B 24 23 24 21.5 
55B 9 6 6 10 
63B 13 14 17 21.5 
68J 3 1 2 2 
71D 11 15 18 14 
71L 20 12 19 21.5 
71M 23 20 23 21.5 
72E 5 8 5 2 
72G 19 18 16 21.5 
73C 15 19 11 12 
758 17 16 15 13 
75D 22 21 21 16 
76C •10 5 9 5 
76Y 18 10 14 17 
81E 26 25 26 15 
88H 6 13 4 9 
91A 21 22 22 21.5 
94B 14 7 12 11 
95B 25 24 25 21.5 

Table 6B 
Intercorrelations of Four Variables for Blacks 

PE Fairness PECM Cleary Fairness Cleary CM 
PE Fairness 1.00 .89 .90 .87 
PECM .89 1.00 .84 .81 
Cleary Fairness .90 .84 1.00 .85 
Cleary CM .87 .81 .85 1.00 

34 

• 



SUMMARY AND CONCLUSIONS 

Summary 

The major purpose of the present research was to compare the Prediction Error fairness 

measure (PE) and the Cleary fairness measure (CFM) across 26 MOS for female and black 

soldiers using (as prediction measures) the seven test LSE composites of the existing ASVAB 

and (as criterion measures) the SQT. Fairness is traditionally defined as the absence of 

underpredictions for the minority groups that are considered potentially susceptible to 

discrimination. The two models were compared for fairness in classification (i.e., over the fiall 

range of scores) and evaluated on the same robust Army database using a common metric. A 

double cross-vaUdation design permitted imbiased estimates of prediction fairness for PE. It was 

concluded that for purposes of selection or setting standards the two models were roughly 

comparable, but the authors consider the PE model more precise and more objective because it 

takes into account individual scores rather than the difference between two regression lines. 

The comparisons between the PE and CFM are summarized below: 

There were a large number of individuals underpredicted in each MOS by the common 

metric. For the PE method, we found underpredictions of 50 percent or more for 21 of 25 MOS 

(females) and for 24 of 25 MOS (blacks). For the CFM method, we found underpredictions of 

50 percent or more for 15 of 25 MOS (females) and for 13 of 25 MOS (blacks). The correlation 

between PE and CFM was .95 for females and .90 for blacks. 

As noted earlier, Cleary evaluated black and white college student groups, using SAT 

scores (the predictors) and GPA (the criteria). Black students numbered 273 and white students 

over 2,000. The authors of the present study believe that it is fair to say that the minority 

students were very carefully selected on the basis of grades, motivation, and other relevant 
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factors. In this academic context, Cleary found the black group regression lines higher than the 

white lines. 

In contrast, the present study numbered over 12,000 blacks out of about 36,000 recruits. 

ASVAB weighted composites were used in 26 MOS as predictors and the SQTs as criteria. We 

compared the results from the PE and CFM methods on an Army sample. While the PE and 

CFM methods had different definitions and methods of computing fairness, we found roughly 

comparable results. 

Conclusions 

Based on the resuhs and comparisons given above, the conclusions made are: 

The large number of performance underpredictions for black and female soldiers found in 

the present study were relatively small in magnitude and are deemed of little practical 

importance in the selection process or for setting MOS cutoff scores, but they may have 

significant consequences for classification if and when classification is designed to optimize 

recruit assignment, and the underpredictions do have undesirable social implications. 

With the removal of the "speeded tests" from the AS VAB - Numerical Operations (NO) 

and Coding Speed (CS) - in January 2002, the authors have found more MOS with 

underpredictions and more individual underpredictions in each MOS, as well as a significant loss 

of mean predicted performance in classification experiments (Zeidner, et al., 1998; 2004). 

Future minorities may constitute as much as 50 percent of recruits in the Army. This is a 

much higher percentage than is expected in the other services.   For this reason alone, the Army 

should assess the issue of fairness as far as practicable. 

The authors argue that in both Cleary's fairness measure and t-test of statistical 

significance there is bias introduced in computing regression lines that are dependent on group 
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membership and not directly based on test and criterion scores of individuals, regardless of 

gender or race. In the Cleary model, this leads to higher t-test and CFM results as reported 

earlier in the results section and in Appendix C. Bias consists of overlapping information in the 

subgroup means of the CFM variable. This overlap in turn inflates both the correlation between 

CFM and group membership and the size of the t-test. An additional souce of inflation of the t- 

test is due to the use of variables that are computed in the same sample as the regression line 

parameters (i.e., back sample inflation). 

PE is also considered a better measure of fairness, holding the issue of the biasing effects 

aside, because measures are computed directly for individuals rather than in terms of the distance 

between regression lines. Mean prediction error differences are equal to the aggregation of 

differences between pairs of predicted criterion scores at the individual level, rather than in terms 

of under- or overprediction of biased regression lines. 

RECOMMENDATIONS: TOWARD IMPROVED CLASSIFICATION 

Consider that societal values dictate that predictor tests be fair to minorities while making 

personnel decisions. 

Reintroduce Coding Speed (and possibly Numerical Operations) ASVAB subtests for the 

Army's use in classification (as the Navy is now doing for CS). This will immediately 

ameliorate the fairness issue for minorities (and significantly increase mean predicted 

performance (MPP) when classification is optimized). 
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APPENDIX A 

COMPUTING STANDARDIZED, MOS SPECIFIC, COMPOSITE SCORES 

Part One 

Discussion of Basic Concepts 

Summary 

The process of obtaining composites consistiiig of best weighted ASVAB tests converted 

to standardized composite scores for the youth population (YP) begins with multiplication of 

operational test scores (1 by 7 row vector) and raw score regression weights (7 by 1 column 

vector), and adding a constant for each individual. The second step is to convert these 

preliminary composite scores to have a mean of 100 and a standard deviation of 20 in the YP. 

After this conversion to the Army standard score scale for the youth population (YP), these 

composite scores are expressed in the same scale as both the minimum cut scores that are 

provided for each MOS, and the nine best weighted "interim" composites that correspond to the 

nine operational job families. Either of these sets of composites, the nine or the 150 are second 

tier selection variables, as described in the next section. Either would be appropriate for use as 

the predictor variables in the algorithms for computing the Cleary fairness measures that are 

compared to the PE fairness measure in this study. Also, either of these sets of composites is 

also appropriate for computing the Thomdike fairness measures that are described but not 

included in the analyses of this study. 

The predictor variable used in the algorithm for computing the PE fairness measure is 

obtained by similarly computing best weights to be applied to test scores in each MOS level job 

family, but correcting the components used to compute the regression weight parameters to the 

Army input population (AIP) instead of to the YP. The resulting PPs are then converted to 
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statistical standard scores based on the means and standard deviations of each of the 150 MOS 

level job families. 

First Tier Composites 

The approximately 250 Army MOS have been placed in 150 first tier job families, most 

of which consist of single MOS families, but a few are clusters of low density MOS. 

The first tier composites proposed for use as black box classification variables in a two 

tiered selection and classification system rely on the use of separate PPs for each MOS level job 

family. These PPs use separate weight vectors and regression constant for each of these 150 job 

families. The 7 best weights and the regression constant for each first tier composite are 

computed using validity coefficients computed against 150 MOS criterion variables (i.e., SQTs) 

corrected for attenuation and then for restriction in range to the Army input population (AIP). 

The variances of both tests and MOS SQT are also corrected to the AIP. These first tier 

composites have statistical standard scores standard deviations equal to the validity coefficients, 

corrected to the AIP, of each PP against the SQT for that MOS. This set of first tier 

composites has a potential, when used as the classification variables in an optimal assignment 

system, of greatly increasing the predicted performance of new soldiers. These first tier 

composites are converted to statistical standard scores, means equal to zero and standard 

deviations equal to 1.0, for use in computing PE fairness measures. This conversion removes the 

hierarchical classification effects property that are possessed by the first tier composites, 

reducing their classification efficiency by approximately ten percent. 

This reduction in classification efficiency was necessary to permit both the predictor and 

criterion variables to be expressed as statistical standard scores. 
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Second Tier Composites 

The 250 Army MOS are currently clustered for operational use into nine (9) operational 

job families, and separate best weighted composites (PPs) computed for each of these job 

families. These nine families and the second tier composites were not used in the present study, 

thus the following description is for background purposes only. Best weighted second tier 

composites are being used as replacements for the integer weighted aptitude area (AA) 

composites. These composites use optimal weights obtained through a process that starts with 

obtaining validity coefficients computed against the same 150 MOS criterion variables (i.e., 

SQTs) corrected for attenuation and then for restriction in range to the youth population (YP), 

and on variances also corrected to the YP. These 150 validity coefficients are then aggregated 

into validity coefficients representing the 9 official Army job families. The best weights are 

applied to the 7 tests and the resulting PP scores are then converted into Army standard scores in 

theYP. 

The same procedure, involving u and k values applied to test scores as is used for 

computing the set of 9 second tier composites, is used in this study to compute a set of 150 

composites corresponding to each of the job families for which the data is adequate to compute 

regression weights. It should be noted that these sets of 9 operational and 150 composites used 

to compute PE fairness measures, and the official minimum cut scores for each MOS are in the 

second tier scale. All three measures have been converted to the Army standard score scale in 

the YP. 

Regression Weights For Composites 

Regression weights applied to tests form PP scores that maximize the prediction of the 

SQTs utilized as the criterion variables in this study. SQT scores for 150 job families (mostly 
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single MOS) were converted to statistical standard scores (SSSs) within the MOS samples. The 

above PP scores for each individual were similarly converted to SSSs and product moment 

correlation coefficients computed between these PP scores and the SQT SSSs separately in both 

halves of each MOS sample (in conformance with a double cross validation design). 

The inter-correlation coefficients among the 7 ASVAB tests and both the criterion and 

predictor variances were also computed in job family half samples. These first tier job families 

at the MOS level were used in this study. 

The test validity coefficients computed in the MOS level samples were corrected for 

unreliability of the criterion and for restriction in range effects to either the YP or AIP. Thus, 

both the variances of the predictor and criterion variables were corrected to either the YP or AIP 

and regression weights computed. The restriction in range correction procedures are thoroughly 

described in Appendix B. 

Conversion of Best Weighted Composites to Standard Score Scale 

Tier two composites, the only composites used in depicting the Cleary measures in this 

study, are PP variables corrected for restriction in range to the YP and then converted to have a 

mean of 100 and a standard deviation of 20 in the YP. This same composite is used in describing 

the Thomdike method in the methods section. The formula required to make this conversion of a 

preliminary "best weighted" composite is provided in the following section. Tier one 

composites, as described in previous studies, are PP variables corrected for restriction in range to 

the AIP and then converted to have means of zero and standard deviations equal to the validity 

coefficients against the MOS SQT. The predictor variables used to compute PEs are obtained by 

converting the tier one composite scores to statistical standard scores in each MOS. 
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Part Two 

Notation, Formulae, and Use of "u and k" parameters with Operational Test Scores: 
Application of Basic Concepts 

Introduction 

The discussion of notation must precede a discussion of formulae, followed by a 

discussion of algorithms, one of which utilizes the u and k parameters that are applied to 

operational test scores to obtain best weighted test composites used in this study. The 

presentation of notation will begin with the definition of subscripts that identify the degree or 

lack of restriction in range correction, the population to which conversion efforts lead, the MOS 

to which best weights apply, and indicate whether individuals or groups provided score vectors. 

These subscripts are applied to matrices, vectors or scalars. 

Notation 

The subscript categories: g, h, i, j, or the numbers identifying the sub-category within the 

category, may be attached to the matrix, vector, etc. in alphabetical order. The meaning of 

subscript categories and the nimibers identifying the sub-categories are listed below: 

a. The sub-categories of g identify the level of restriction in range correction pertaining 

to the symbol to which the subscripts are attached; g = 0 indicates no such correction is utilized; 

g = 1 indicates that corrections for restriction in range have been made to the Army input 

population; and g = 2 indicates that these corrections have been made to the youth population. 

The computation of a value in a sample drawn from the indicated population can be substituted 

for a correction to that population. 

b. The subcategories of h identify the population to which a conversion in scale has been 

made: h = 0 indicates that no conversion in scale is made; h = 1 indicates the conversion is to 
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the first tier scale (M = 0, SD = validity coefficient for predictor); h = 2 indicates the conversion 

is to the second tier scale (for composites, M = 100, SD = 20). 

c. The presence of the subscript 'i' indicates that there is a separate value for each 

individual and "j" indicates that there is a separate value for each MOS (i.e., job family). The i 

and/or j subscript will be omitted when it should be clear to the reader that computations are 

accomplished separately for each individual and/or MOS. Only scalar values or 1 by 7 vectors 

have "i" or "j" subscripts, that is, no matrices have "i" or "j" subscripts. 

The above subscripts are attached to scalar variables, vectors, or matrices. The relevant 

subscripts are shown in the following definitions: 

Ti = 1 by 7 vector of ASVAB test scores for each individual; 

Yj = 1 by 7 vector of SQT criterion scores for each individual; 

Wghj = 7 by 1 vector of regression weights used in the prediction of SQT scores; 

Zghj = a scalar number representing the individual LSE scores of a specified SQT 

variable; 

Rghj = a 7 by 7 matrix whose elements are correlation coefficients among the ASVAB 

tests corrected to, and/or obtained in the indicated population; 

Vgj = a 1 by 7 vector whose elements are validity coefficients between the predictors and 

the SQT criterion for the jth MOS; 

Mtgh = a 1 by 7 vector whose elements are ASVAB test means; 

mzgj = a scalar number representing the mean of a predictor (a composite of 

"best" weighted ASVAB tests) for the jth MOS; 

mygj = a scalar number representing the mean of SQT scores for the jth MOS; 
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Stg = a 7 by 7 diagonal matrix whose diagonal elements are standard deviations of tests; 

these elements may be defined for a specified population, or corrected for restriction in range to 

that population; 

Szgh = a scalar number representing the standard deviations of the composite of best 

weighted ASVAB test scores as defined in the population to which the scale conversion process 

is targeting; 

ti = operational ASVAB test score of an individual; 

Zgh = the least square estimate (LSE) of the criterion (Y); 

Ugh = multipliers for x gh in the process of converting Xgh to Zgh; 

kgh = regression constant used in the process of converting Xgh to Zgh. 

Basic Formulae 

(la.)Wghj = (Rghj)'' (Vghj)'; regression weights for application to predictor scores in 

statistical standard score format; a 7 by one vector of weights. 

(lb.) B = a 1 by 7 vector for which each element is equal to the ratio of the SD of the 

criterion scores divided by a SD of an ASVAB test ( each element is equal to (Syg / Sxg multiplied 

by the corresponding standard score regression weight. These elements are the raw score 

regression weights. Note that each criterion SD is equal to 1.0 within a MOS for which the 

criterion scores have been converted to statistical standard scores (SSSs). 

(2.) Zghj =  Tj Bghj    + (mygj.. Mtghj Bghj); predicted performance scores that can also 

be described as LSEs of the criterion. 

(3.)qghj   =  2/{(Wghj)'RghWghjf^} 

A 1 by 7 vector of q weights is designated as Q. 
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(4.) Xghj - Qghj   Zghj; composite scores used to compute both Cleary and Thomdike 

fairness measures, when both g and h equal 2. These scores (g and h = 2) are in the same scale as 

the minimum cut scores determined by an Army panel. 

(4.a) Ughj =   {Qghj Wghj (syghj / Stghj)} , u weight for the jth operational test score. A 7 by 1 

vector of u weights is designated as Uj. 

(4b.) kghj = myghj - Mtghj Uj + 100 

(4c)xghj = (TiUj) +kghj 

Discussion of Key Formula 

The PP scores as defined in formula (2), when g = 1 and h = 0 are the first tier 

composites proposed for use in determining first tier minimum cut scores and in effecting 

optimal assignments. The PP scores that are converted to statistical standard scores for use in 

computing the PE fairness scores are also defined in formula (2) with g = 2 and h equal to zero. 

A composite in the first tier scale has a mean of zero and a standard deviation within each MOS 

equal to the composite's validity coefficient. 

The composite scores used in computing CFM and in describing the Thomdike fairness 

method are as defined in formula (4c), when both g and h equal 2. These latter composite scores 

are converted to the second tier scale which makes them comparable, with respect to scale, to the 

operational test scores and to the minimum cut scores provided by the Army panel. Composite 

scores in this second tier scale have a mean of 100 and a standard deviation of 20 in the youth 

population. 

The u values applied to test scores are obviously more than regression weights since they 

also convert the PP scores to Army standard scores in the YP. Since the operational tests have a 

mean of 50 and a standard deviation of 10 in the YP, and have moderately high inter-correlation 
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coefficients, the conversion of a weighted test composite to the YP with a mean of 100 and a SD 

of 20 requires the multiplication of a weighted test sum by Q. 
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APPENDIX B 

IMPACT OF RESTRICTION IN RANGE ON THE ESTIMATION OF AA COMPOSITES 

Introduction 

This appendix will focus on how to obtain the AA composite regression weights (referred 

to as "u and k" values) for operational use in the applicant Youth Population.^ The validity 

coefficients we wish to maximize in the Youth Population actually exist only in doubly restricted 

MOS samples containing the Skill Qualifications Test (SQT) criterion in the 1987 -1989 

research data set. Appropriate corrections have to be made to these restricted validity 

coefficients to obtain unrestricted validity coefficients that, if subjected to restriction in range 

effects, would equal what was obtained in the MOS samples. We also have to estimate what the 

criterion standard deviation (SD) would have to be in the unrestricted population to yield the 

criterion SDs observed in the MOS samples.^ 

The Army operational process involves an applicant Youth Population from which self- 

selection first occurs, and then the Recruiting Command selects some and rejects others using 

tests, medical examinations, security investigations etc. This results in an Army Input 

Population from which classification and assignment procedures and further self selection create 

the 150 MOS samples, each with its separate SQT criterion measure. Thus there is a selection 

stage and a classification and assignment stage, with a restriction in range effect on both test 

scores and hypothetical criterion scores occurring at both stages. If we confined selection effects 

to the impact of the AFQT screen, the two kinds of effects would have to be corrected in a 

sequential manner. However, since we are not restricting ourselves to such a limited selection 

This appendix has been prepared by Cecil Johnson, consulting research psychologist. 
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effect, and are instead considering all effects on the subtest co-variances at each restriction stage, 

we can correct validity coefficients and criterion SDs directly to the Youth Population. 

Our correction process for restriction in range involves contrasting, separately for each 

MOS, the within-MOS subtest variance/co-variances against the Youth Population operational 

test variance/co-variances. The differences in the variance/co-variances across the unrestricted 

and the restricted samples for variables specified as explicitly selected variables are the measures 

of the magnitude of the restriction effect. For our purposes we use all ASVAB subtests as the 

explicitly restricted variables and we designate the criterion variables as the implicitly restricted 

variables that are restricted to the extent that they are predicted by the explicitly restricted 

variables. 

Using this concept we can calculate the effect selection has on subtest scores and can 

then calculate the further effect classification and assignment has on test scores in the Army 

Input Population - to arrive at the doubly restricted subtest scores in the MOS samples. 

Considering the correlation of the subtest scores with the criterion scores and the amount of 

restriction occurring at each stage, we can determine the restriction effect on the hypothetical 

criterion scores and then provide a correction extending from the MOS criterion scores to the 

less restricted populations where the criterion scores exist only as a function of the subtest scores 

(i.e., as predicted criterion scores). 

Approach 

There is more than one algebraically equivalent way of providing operational u and k 

values when criterion scores are only available on the doubly restricted MOS samples. We will 

'  It should be noted that whenever validity coefficients are mentioned, we are assuming that these coefficients have 
been corrected for attenuation with respect to criterion unreliability. Even if we should refer to an uncorrected 
validity coefficient (for restriction in range), this "uncorrected" coefficient has been corrected for attenuation. 
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use an approach that utilizes the equality of G-weights computed in the restricted and the 

unrestricted population (using Gulliksen's formulation as described below). The G-weights 

computed in the restricted population samples will be used as a substitute for the unobtainable G- 

weights in the unrestricted population in Gulliksen's formula for computing the criterion 

variance in the unrestricted population. 

1. Consider the matrix of G-weights, G, in each MOS sample. Our use for G is as an entry 
value in Gulliksen's formula (see below). The corrected validity coefficients, obtained with 
the use of the formula at either or both the Army Input Population and Youth Population 
points, were then employed in computing Beta weights in the Youth Population. Note that 
this correction must be made from each MOS sample to the Youth population to produce 
validity coefficients corrected for restriction in range. These corrected MOS validity 
coefficients are then aggregated into a corrected validity for each specified family, using 
acquisition values to weight the MOS validity coefficients corrected to the Youth Population. 

2. Visualize a composite computed for an individual by summing the product of each subtest 
standard score and B. The best weighted composite XB will have a SD equal to the validity 
of predicted performance (PP) in the Youth Population if the elements of the V matrix used 
in computing B are validity coefficients corrected for restriction in range to represent the 
Youth Population, and the R matrix consists of the inter-correlation coefficients among 
subtests as expected in the Youth Population. The criterion variables, predicted as least 
square estimates (LSEs) by the PP composites, have a SD equal to 1.0 in the restricted MOS 
samples, while the hypothetical unrestricted criterion variables would have larger SDs in the 
less restricted populations. Compute the Youth Population beta weights as follows: 

B = R' V"^, 

where R is the Youth Population matrix of subtest inter-correlation coefficients and V is the 
matrix of validity coefficients corrected to the Youth Population. Looking at the formula in 
more detail, 

R = Sx Cxx Sx, and V"^ = Sx Cxc Sc, 

where C represents criterion / subtest variance and co-variances found in Gulliksen's 
formulae, and S represents a diagonal matrix where each diagonal element is equal to a 
reciprocal of aSD. 

3. Compute b-weights by converting the Beta weights computed in step 2. The b-weights that 
are appropriate to apply to operational test scores to obtain a least squares estimate (LSE) of 
the criterion can be defined in terms of the Beta weights, the SDs of the subtests, and the SDs 
of the criterion scores. These b-weights applied to the operational test scores would provide 
a composite that, if the appropriate regression constant were subtracted, would have a mean 
of 50 and a SD less than 10 (because of the effects of the positive inter-correlation 
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coefficients among the subtests). The b-weights are computed, ignoring the regression 
constants, as follows: 

b-weight = B-weight * (SD)c / (SD)t, 

where t represents a subtest, SDt = 10, and c represents the criterion variable. 

4. The composite computed in step 3 will have a SD less than 10. We wish to convert this 
composite to have a SD of 20. To do this we will multiply each b-weight by a composite 
multiplier (CM) that will convert the composite to have a SD of 20 without affecting the 
composite mean. CM can be computed as follows. 

CM = 20/(10*(bRb'^)^\ 

where b is a vector of b-weights and R is the Youth Population matrix of subtest inter- 
correlation coefficients. 

5. We can now compute the u and k values for each composite: 

Uj = CM * b-weight of the j-th subtest 
k= 100- Zuj*50 

Key Formulae From Gulliksen 

The algorithms we use to correct for restriction in range due to "selection" effects are 

developed and described by Gulliksen (1950)^°. His development is based on a model that 

visualizes the presence of both explicit and implicit selection processes in the imrestricted 

population, and the presence of both explicitly and implicitly selected  variables in the restricted 

population. Thus, both explicit and implicit variables are present in both the unrestricted and 

restricted populations. The author shows, in the context of this model, relationships among the 

restricted and unrestricted variances/co-variances without relaxing flexibility as to which 

population contains the unknowns that cannot be directly computed but can be determined on the 

basis of the relationships defined in his model. 

The Gulliksen formulae for correcting variances and/or co-variances for restriction in 

range effects are based on Lawley's (1943) assumptions that include the following: (1) that the 

'°  See H. Gulliksen, Theory of Mental Tests. New York: John Wiley & Sons, 1950. 
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regression of the implicitly restricted variables on the explicitly restricted predictors is linear; (2) 

that the co-variance of the restricted variables exhibit homoscedasticity; and (3) that the G- 

weights for application to the population variance-covariance matrix of operational test scores 

(explicitly restricted variables, e.g., sub-tests) are invariant to the effects of restriction (as 

defined). Thus it is assumed that 

G=(Cxx)-' (Cxc)'' 

can be computed in a restricted population sample and substituted in formulae for use in the 

unrestricted population where a G-weight is to be entered. Gulliksen's formula 42, used to 

compute criterion variance in the Youth Population, requires such an entry. This criterion 

variance is essential for converting Beta-weights into b-weights and obviously cannot be directly 

computed m the Youth Population. 

As previously stated, our objective is to have an algorithm replete with valid formulae 

that will convert operational test scores into LSEs of the criterion (i.e. PP composites) in a scale 

appropriate for use in the indicated population. 

Application of Formulae 37 and 42 

Applying combined formulae 37 and 42 to one criterion variable at a time, and making 

small changes in Gulliksen's notation, we can compute the squared SD of each Youth Population 

criterion variable associated with each job family. This result can be described as the Youth 

Population criterion variance, or YPCV: 

YPCV - 1.0 + Cxc (C^f (( *C^) (C,y -1)( C,,^-^, 
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where (Cxc^ is a 9 by 1 vector of co-variances between the criterion variable and each of the 9 

tests, Cxx is a 9 by 9 matrix of co-variances among 9 tests using the operational test scores, and 

vectors are denoted by underlining. Note that the asterisk matrix, e.g. *C, indicates computation 

in the unrestricted (i.e. Youth Population) sample.'* 

The R matrix has the following relationship with the Cxx matrix: 

K = Ox Cxx ^X5 

where S is a diagonal matrix for which the diagonal elements are equal to the reciprocals 

of the SDs of either the subtests or the criterion variable in either the MOS sample or the Youth 

Population, as indicated. 

The *CxJ matrix is derived from the GuUiksen formula as: 

(*Cxcf  = (*Cxx) (G) - (*Cxx) (Cxx)"'(Cxcf . 

Note that one column of *Cx/ is ( Cx^)^, a vector used in the computation of YPCV. 

The validity matrix (* V^) required to compute Beta weights in the Youth Population has the 

following relationship with the *Cxc vector: 

one column of *V'^ is (*Sx) (*Cxc)'^ (*Sc), 
and note that * Sc is a scalar. 

Positively Weighted Composites for the Visible Tier 

This section extends the initially professed objectives of this appendix beyond restriction 

in range corrections and the conversion of Betas to u and k values. We will now discuss the 

''   Note that YPCV can also be written as follows: 

YPCV =1.0 + (W^)(*C» W - (C^f ), 

where W = (Cxx)'' (Cxc^^ , a 9 by 1 vector of regression weights for a specified job family. W will also be 
recognized as one column of the G matrix. 
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methodology for selecting the "best" positively weighted composites where best is defined in 

terms of maximizing the multiple correlation coefficient of a set of tests with the criterion. 

The surest way to find this best positively weighted composite fi-om a set of n tests is to 

compute the Betas and validity coefficients for every possible combination of n tests, then 

successive levels: for n-1 tests, then n-2 tests,.. .to 2 tests — rejecting any combination of tests 

that has one or more negative weights. There is no need to actually consider all of these 

combinations since there comes a point in this process where all multiple correlation coefficients 

(Rs) for succeeding levels are lower than the highest R in a prior level. 

The multiple-correlation coefficient, R, corresponding to each set of Betas is computed 

for each combination whether or not all of the weights are positive. Clearly, if the R for each 

combination of m-1 tests, negative weights permitted, was less than the highest R for m 

positively weighted subtests computed fi-om the combinations considered at the prior level, the 

stopping point has been reached. After the stopping criterion has been reached, the set of 

subtests with all positively weighted coefficients that provides the maximum R is selected as the 

very best set and these weights become the B-weights for the associated subtests. All other tests 

are given a weight of zero in the composite associated with the specified job family. 
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APPENDIX C 

FAIRNESS MEASURES AS PREDICTORS OF GROUP MEMBERSHIP 

Introduction 

This appendix explores the properties of the CFM in a special context. We first consider 

a t-test that could be used to assess the statistical significance of the difference obtained by 

subtracting the CFM mean computed in the total MOS sample , used by us as a surrogate for the 

population corresponding to the MOS sample. Our concern is with the extent the mean black (or 

female) CFM in the minority sample is inflated in the minority sub-sample ( a back sample 

regarding those parameters computed in the minority sample)—and inflated in the opposite 

direction in the total sample from using "back sample" parameters computed in the total MOS 

sample. These two separate biasing effects are aggregated in computing the differences between 

the sub-sample and total MOS sample scores that constitute the t-test formula of the t-test 

described above. 

We will also compare the t-test formula to a bi-serial correlation formula where the 

continuous variable is CFM and the dichotomous variable represents membership in one of two 

altemative groups (e.g., black vs. white, female vs. male). It will be shown that the correlation of 

the CFM scores with group membership is inflated as compared to the correlation of PE scores, 

or other scores computed v^thout knowledge or consideration of an individual's membership in 

any group. We then show the effect a change in the magnitude of the correlation between the 

fairness measure and group membership has on the magnitude of the t-statistic. In conclusion, 

we discuss why the CFM is certain to have a considerably higher correlation with group 

membership, as compared to when PE is used to compute this bi-serial correlation, in addition to 

the inflation due to back validity effects. 
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Formulae 

The following formulas apply to black, white and total groups , but the same concepts 

behind these formulae can be applied to female, male and total groups. All formulae under sets 1 

through 5 apply to either PE or Cleary fairness measures. 

1. Numerator of biserial r = (Mb - Mw) Pb (1 - Pb);  Pb is the percentage of total MOS sample 
that IS black., Mb is mean of fairness measures in black sub-sample, and Mw is the mean of 
fairness in the white sub-sample; Pw = (1 - Pb). 
Numerator of t = (Mb - Mt) = (Mb - Pb Mb - Pw Mw); 
where P^ = ( 1 - Pb )and Mt is the mean of fairness measure sample in the total MOS sample 
Thus, Mt = PbMb + (l-Pb)Mw, 
and numerator of t = (Mb - Mw) (1 - Pb) = (Mb - Mt) 

2. Biserial r      = {(Mb - M^) (1 - Pb) Pb} / {(SD)t (z)}; 

Z IS 

b 

Where (SD)t is the standard deviation of the fairness measure in the total MOS sample, and „ „ 
the ordinate on the normal curve at the point where the tail has an area equal to the smaller of P 
or(l-Pb). 

3. t  = [ (1-Pb) (Mb - Mw) / ( SD)b] (N )"2; where (SD) b is the standard deviation of a 
fairness measure in the black sample. 

4. Expressing "t" by a function which includes "r " as a muhiplier: 

t= r [ { SD),/(SD)b } { z/(Pb)}{(Ny^2j ^ 

5. Expressing "r" by a function which includes "t" as a multiplier- 
r = t[{(SD)b/(SD)t}{Pb/z(N)'^} 

Further Discussion and Conclusions 

A fairness measure can have a positive or negative correlation with membership in a 

minority group. A positive correlation may reflect characteristics often present in individuals in 

minority groups, such as poor test taking ability as compared with his/her on-the-job capability. 

In another type of MOS for which written tests are relatively low predictors of job performance 

the test taking ability may exceed performance capability providing a negative correlation (e.g. 
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for females in MOS requiring skills seldom taught to females). Both t-tests and bi-serial 

correlation coefficients would be negative in this situation. 

The above characteristics, without further contamination, would not constitute a 

dependence between the fairness measure and the dichotomous variable described above. 

However, if the continuous variable and the dichotomous variable have a built in dependence, 

the t tables based on Students distribution would not be appropriate for use with the obtained 

values oft. We found such a dependence to be present for t-tests computed using the CFM ,and 

although these values were computed they are relegated to an appendix (Appendix D) and are 

not discussed in the main body of the report. 
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APPENDIX D 

T-TESTS FOR CLEARY MODEL FOR FEMALES AND BLACKS 

t-test 

MOS Female Black 
13M 0.000 -3.373" 
16D 2.716" 8.128** 
31K 13.583** -31.150** 
31V 14.511** 22.575** 

33T 0.494 0.000 
45K -1.221 8.789** 
52D -2.208* -20.182** 
54B 8.192 -16.198** 
55B 0.573 -13.901** 
63B 26.246** 48.097** 
68J -0.051 -7.024** 
71D -5.182** -6.238** 
71L -3.003** -7.184** 
71M 5.305** 8.347** 
72E 5.730** -12.326** 
72G 3.052** -6.641** 
73C 2.168* -9.776** 
753 -7.142** -14.081** 
75D 6.231** -8.575** 
76C 5.501** 19.293** 
76Y -6.573** -28.960** 
81E 1.887* 4.269** 
88H -4.358** -10.100** 
91A -7.855** -27.219** 
948 16.525** -36.049** 
953 12.590** -17.605** 

Notes 
Statistically significant at .01 level 
Statistically significant at .05 level 
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Appendix E 

The Effect on the Cleary Fairness Measure 
of the Proportion of Minorities in the Total Sample 

Introduction 

We will establish in this appendix, under the condition that the population means of the 
predictor and criterion variables remain constant, that the expected magnitude of the mean 
Cleary Fairness Measure (CFM) for a minority group decreases (i.e., overprediction decreases) 
as the ratio of the minority group size to the total group size increases. Thus, an increase in the 
proportion of minorities in the total group increases the expectation of underprediction in the 
minority group when the CFM is used to measure fairness. For example, this makes the finding 
of underprediction in the Army more likely than in the Air Force. However, when the mean 
predictor score in the minority group exceeds the mean predictor score in the total group, 
underprediction in the minority group requires that the mean criterion score in the minority group 
be negative (i.e., less than the mean criterion score in the total group, since the latter is set at zero 
in this study). 

Notation 

The means of either the predictor variable (x) or the criterion variable (y) will be 
expressed in bold caps, as: Xg for the predictor mean in a minority group; Xt for the predictor 
mean in the total MOS group, Yg for the criterion mean in the minority group, and Yt for the 
criterion mean in the total MOS group. 

The Cleary Fairness Measure can be defined in terms of the difference between two 
regression equations: 

CFM = [bg X + Cg ] - [ bt X + C,]. 

If the mean CFM for the minority group is denoted as (CFM)g, the CFM as measured in 
the minority group sample can be written in terms of predictor and criterion means as follows: 

(CFM)g=[bgXg+(Yg-bgXg)]-[btXg + (Yt-btXt)]. 

Since the mean of the first bracketed term is equal to the criterion mean in the minority 
group (i.e., Yg), the mean (CMF)g can be expressed as: 

(CFM)g=Yg-[b,Xg + (Y,-btXt)]. 
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Algebraic Simplification and Interpretation 

Noting that: (1) Yt is zero by definition in this study, since the criterion scores are all 
converted to statistical standard scores within each total MOS sample, and (2)Yg is the mean of 
bg X + Cg, a simplification process yields a formula for CFM)g written as follows: 

(CFM)g = Yg-b,(Xg-Xt). 

With Yg and bt specified to be invariant, along with the mean of x in the minority and 
non-minority sub-groups of a specified MOS population, we now consider the effect of varying 
the proportion of the total sample drawn from the minority population. Under these conditions 
the difference between mean of x found in the two sub-samples, minority and total, will be 
maximized as the minority sample size approaches zero and will be minimized as the minority 
sample approaches becoming 100 percent of the total sample. The smaller this difference, the 
larger CFM becomes with (CFM)g = Yg when Xg = X,.. ' ' 

Conclusions 

It is potentially misleading to compare CFM values across studies where the 
proportions of minority individuals for a specified job widely differ. This would be particularly 
striking when comparing fairness results across comparable technical jobs in the Army and Air 
Force, because of the relatively low percentage of minorities in the Air Force. 
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